
Applying Semantic Technologies to Widely Diverse Endeavours
— Brett Alistair Kromkamp for PyCon Sweden 2020

PYTHON AND
SEMANTIC

TECHNOLOGIES

BRIEF OVERVIEW

➔ Brett Alistair Kromkamp — @brettkromkamp (Twitter) and
https://github.com/brettkromkamp (GitHub)

➔ Dutch, born in Africa (Zambia), living in Northern Norway
➔ Primarily a team lead for software development teams, but also a CTO for 4

years
➔ Semantic technologies solutions provider
➔ Worked in the tourism industry in Singapore and Spain as a software developer

and team lead for over 15 years
➔ Currently, working in the educational sector — and have been, for the last 8

years

WHO AM I?

https://github.com/brettkromkamp

TALKING
POINTS

THE TOPIC MAPS
PARADIGM

USE CASE 1: KNOWLEDGE
MANAGEMENT

01

03

02
04

05
USE CASE 2:

STORYTELLING

THE STORYTELLER
APPLICATION

TECHNICAL OVERVIEW OF
CONTEXTUALISE

THE TOPIC MAPS
PARADIGM

01
Topic maps provide a way to describe complex relationships between
abstract concepts and the accompanying real-world (information)
resources

DOMAIN MODEL — AN ASSOCIATIVE GRAPH

➔ Topic: represents an abstract concept
➔ Association: expresses a semantically meaningful relationship between two or

more topics
➔ Occurrence: connects an information resource to a topic
➔ Scopes and scope filtering
➔ Metadata

THE TOPIC MAPS PARADIGM

THE TOPIC MAPS PARADIGM

USE CASE 1: KNOWLEDGE
MANAGEMENT

02
Contextualise is a simple but effective tool particularly suited for organising

information-heavy projects and activities consisting of unstructured and widely
diverse data and information resources

TOPICS, ASSOCIATIONS AND OCCURRENCES

➔ Multiple topic maps
➔ Topics
➔ Associations

◆ Navigable network graph
◆ Associative tags
◆ Knowledge paths — for easy hierarchical navigation through a topic map

➔ Occurrences and information resources
◆ Text, images, files, links and videos
◆ glTF-based 3D scenes — with AR and VR support by December 2020

CONTEXTUALISE: A PERSONAL KNOWLEDGE
MANAGEMENT APPLICATION

LET’S TAKE A CLOSER LOOK

CONTEXTUALISE

USE CASE 2: STORYTELLING
AND WORLDBUILDING

03
Human beings have been telling stories as long as there’s been a
language to tell them in. We think in stories, remember in stories, and
turn just about everything we experience into a story.

EVENTS, PARTICIPANT, OBJECTS (THINGS) AND NARRATIVE RELATIONSHIPS

➔ Semantic narrative event
◆ What? When? Where? Who? Why? How?

➔ Events are recursive
◆ Sub-events are to events what events are to a narrative: they keep moving

the narrative forward, each at their own level
➔ Relationships

◆ Support for both spatial and causal relationships
➔ Extending lower-level topic map model with a higher-level semantic narrative

model

SEMANTIC DATA MODEL FOR STORYTELLING AND
WORLDBUILDING PURPOSES

THE STORYTELLER APPLICATION: A
CONTEXTUALISE EXPERIMENT

04
A three.js frontend application talking to a Contextualise/TopicDB backend

THREE.JS, WEB SERVICES AND A SEMANTIC GRAPH BACKEND

➔ Navigation between narrative events support for sub-events
➔ Interactive 3D scenes with Points of Interest

◆ Participants
◆ Objects (things)
◆ Inter-scene navigation
◆ Tags

➔ Entity viewer
➔ AR and VR support coming in 2021

STORYTELLER: A THREE.JS-BASED APPLICATION

LET’S TAKE A CLOSER LOOK

STORYTELLER

TECHNICAL OVERVIEW
OF CONTEXTUALISE

05
Why did Flask make sense for Contextualise? To understand that we
need to look at the intersection of Contextualise’s architecture and the
nature of Flask — hint: it’s unopinionated

CONTEXTUALISE’S ARCHITECTURE AND FLASK CHARACTERISTICS

➔ Flask
◆ Small core
◆ Extendable
◆ Unopinionated

➔ Contextualise architecture
◆ Broadly speaking, Contextualise is divided into a web “frontend” on one

hand, and a graph-based backend, on the other
◆ TopicDB, a so-called topic maps engine — a variation of the repository

pattern

WHY FLASK?

ONE OF THE SO-CALLED “ENTERPRISE” PATTERNS

➔ Mediates between the domain and data mapping layers
➔ Beneficial for a system with a complex domain model
➔ Achieves a clean separation and one-way dependency between the domain and

data mapping layers
➔ In Python terms, the repository is a context manager with __enter__ and __exit__

methods for open and close (connection) semantics

THE REPOSITORY PATTERN

TOPIC_STORE.PY

def get_topic_store():

 if "topicstore" not in g:

 g.topic_store = TopicStore(

 current_app.config["TOPIC_STORE_USER"],

 current_app.config["TOPIC_STORE_PASSWORD"],

 host=current_app.config["TOPIC_STORE_HOST"],

 port=current_app.config["TOPIC_STORE_PORT"],

 dbname=current_app.config["TOPIC_STORE_DBNAME"]

)

 g.topic_store.open()

 return g.topic_store

def close_topic_store(e=None):

 topic_store = g.pop("topicstore", None)

 if topic_store is not None:
 topic_store.close()

WIRING UP AND USING THE DATA STORE

TOPIC_STORE.PY (CONTINUED)

def init_app(app):

 app.teardown_appcontext(close_topic_store)

__INIT__.PY

from contextualise import topic_store

topic_store.init_app(app)

WIRING UP AND USING THE DATA STORE

VIDEO.PY (BLUEPRINT)

@bp.route("/videos/<map_identifier>/<topic_identifier>")

@login_required

def index(map_identifier, topic_identifier):

 topic_store = get_topic_store()

 topic_map = topic_store.get_topic_map(map_identifier, current_user.id)

 if topic_map is None:

 abort(404)

 if not topic_map.owner and topic_map.collaboration_mode is not CollaborationMode.EDIT:

 abort(403)

 topic = topic_store.get_topic(map_identifier, topic_identifier)

 if topic is None:

 abort(404)

WIRING UP AND USING THE DATA STORE

Does anyone have any questions?

info@contextualise.dev
https://contextualise.dev

https://brettkromkamp.com
https://github.com/brettkromkamp

THANKS! ANY QUESTIONS?

